Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Angew Chem Int Ed Engl ; : e202320029, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591694

RESUMO

N1-methyladenosine (m1A) modification is one of the most prevalent epigenetic modifications on RNA. Given the vital role of m1A modification in RNA processing such as splicing, stability and translation, developing a precise and controllable m1A editing tool is pivotal for in-depth investigating the biological functions of m1A. In this study, we developed an abscisic acid (ABA)-inducible and reversible m1A demethylation tool (termed AI-dm1A), which targets specific transcripts by combining the chemical proximity-induction techniques with the CRISPR/dCas13b system and ALKBH3. We successfully employed AI-dm1A to selectively demethylate the m1A modifications at MALAT1 A8422, and this demethylation process could be reversed by removing ABA. Furthermore, we validated its demethylating function on various types of cellular RNAs including mRNA, rRNA and lncRNA. Additionally, we used AI-dm1A to specifically demethylate m1A on ATP5D mRNA, which promoted ATP5D expression and enhanced the glycolysis activity of tumor cells. Conversely, by replacing the demethylase ALKBH3 with methyltransferase TRMT61A, we also developed a controllable m1A methylation tool, namely AI-m1A. Finally, we caged ABA by 4,5-dimethoxy-2-nitrobenzyl (DMNB) to achieve light-inducible m1A methylation or demethylation on specific transcripts. Collectively, our m1A editing tool enables us to flexibly study how m1A modifications on specific transcript influence biological functions and phenotypes.

2.
BMC Cancer ; 24(1): 538, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678181

RESUMO

BACKGROUND: Patients with immunocompromise were suspected to encounter a high risk for severe coronavirus disease 2019 (COVID-19) infection on early period; however, data is lacking nowadays and immune response remain unclear. METHODS: In this retrospective study, internet questionnaire survey and medical records were acquired in pediatric hematology oncology patients. Clinical severity, immunological characteristics, and outcomes were analyzed from December 1, 2022 to January 31, 2023 at the 3rd year of pandemic in China. RESULTS: A total of 306 patients were included, with 21 patients (6.9%) asymptomatic, 262 (85.6%) mild severity, 17 (5.6%) moderate severity, 5 (1.6%) severe severity, and 1 (0.3%) critical severity. Seventy-eight (25.5%) patients were on intensive chemotherapy, and 32.0% children were on maintenance chemotherapy. Delays in cancer therapy occurred in 86.7% patients. Univariable analysis revealed active chemotherapy (P < 0.0001), long duration of symptom (P < 0.0001), low lymphocytes count (P = 0.095), low CD3 + and CD8 + T cell count (P = 0.013, P = 0.022), high percentage of CD4 + TCM (P = 0.016), and low percentage of transitional B cells (P = 0.045) were high risk factors for severe COVID-19 infection. Cox regression model showed that the absolute lymphocytes count (P = 0.027) and long duration of symptom (P = 0.002) were the independent factors for severity. Patients with CD8 + dominant and B cell depletion subtype wasn't related with severity, but had higher percentage of CD8 + effector memory T cells (TEM) and terminally differentiated effector memory T cells (TEMRA) (P < 0.001, P < 0.001), and a longer COVID-19 duration (P = 0.045). CONCLUSION: The severity was relatively mild in children with immunodeficiencies in the third year of COVID-19 pandemic. Low lymphocyte count and long duration of symptom were the independent risk factors with COVID-19 severity. Delays in cancer care remain a major concern and the long outcome is pending.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/complicações , Criança , Masculino , Feminino , Estudos Retrospectivos , Pré-Escolar , Adolescente , SARS-CoV-2/imunologia , Imunofenotipagem , China/epidemiologia , Lactente , Contagem de Linfócitos , Índice de Gravidade de Doença , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/complicações , Neoplasias/imunologia
3.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446660

RESUMO

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Assuntos
Motivação , Transdução de Sinais , Camundongos , Masculino , Animais , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Tonsila do Cerebelo/metabolismo , Neuregulina-1/metabolismo
4.
Chemosphere ; 353: 141567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417488

RESUMO

Bisphenol A (BPA) and its analogs are common environmental chemicals with various adverse health impacts, including cardiac toxicity. In this study, we examined the long term effect of low dose BPA and three common BPA analogs, bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) based models. HiPSC-CMs and human cardiac organoids were exposed to these chemicals for 4-5 or 20 days. 1 nM BPA, BPS, and BPAF, but not BPF, resulted in suppressed myocyte contractility, retarded contraction kinetics, and aberrant Ca2+ transients in hiPSC-CMs. In cardiac organoids, BPAF and BPA, but not the other bisphenols, resulted in suppressed contraction and Ca2+ transients, and aberrant contraction kinetics. The order of toxicities was BPAF > BPA>∼BPS > BPF and the toxicities of BPAF and BPA were more pronounced under longer exposure. The impact of BPAF on myocyte contraction and Ca2+ handling was mediated by reduction of sarcoplasmic reticulum Ca2+ load and inhibition of L-type Ca2+ channel involving alternation of Ca2+ handling proteins. Impaired myocyte Ca2+ handling plays a key role in cardiac pathophysiology and is a characteristic of cardiac hypertrophy; therefore we examined the potential pro-hypertrophic cardiotoxicity of these bisphenols. Four to five day exposure to BPAF did not cause hypertrophy in normal hiPSC-CMs, but significantly exacerbated the hypertrophic phenotype in myocytes with existing hypertrophy induced by endothelin-1, characterized by increased cell size and elevated expression of the hypertrophic marker proBNP. This pro-hypertrophic cardiotoxicity was also occurred in cardiac organoids, with BPAF having the strongest toxicity, followed by BPA. Our findings demonstrate that long term exposures to BPA and some of its analogs cause contractile dysfunction and abnormal Ca2+ handling, and have potential pro-hypertrophic cardiotoxicity in human heart cells/tissues, and suggest that some bisphenol chemicals may be a risk factor for cardiac hypertrophy in human hearts.


Assuntos
Fluorocarbonos , Células-Tronco Pluripotentes Induzidas , Fenóis , Humanos , Miócitos Cardíacos , Cardiotoxicidade , Compostos Benzidrílicos/toxicidade , Cardiomegalia , Organoides
5.
Curr Allergy Asthma Rep ; 23(11): 635-645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804376

RESUMO

PURPOSE OF REVIEW: As a sulfone antibacterial agent, dapsone has been widely used to treat leprosy. Moreover, dapsone is also used in many immune diseases such as herpetic dermatitis because of its anti-inflammatory and immunomodulatory effects. However, dapsone can cause several adverse effects, the most serious being dapsone hypersensitivity syndrome. Dapsone hypersensitivity syndrome is characterized by a triad of eruptions, fever, and organ involvement, which limits the application of dapsone to some extent. RECENT FINDINGS: In this article, we review current research about the interaction model between HLA-B*13:01, dapsone, and specific TCR in dapsone-induced drug hypersensitivity. In addition to the proposed mechanisms, we also discussed clinical features, treatment progress, prevalence, and prevention of dapsone hypersensitivity syndrome. These studies reveal the pathogenesis, clinical features, and prevalence from the perspectives of genetic susceptibility and innate and adaptive immunity in dapsone hypersensitivity syndrome, thereby guiding clinicians on how to diagnose, prevent, and treat dapsone hypersensitivity syndrome.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade , Hanseníase , Humanos , Dapsona/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/terapia , Hipersensibilidade/complicações , Síndrome , Hanseníase/induzido quimicamente , Hanseníase/complicações , Hanseníase/tratamento farmacológico
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 989-994, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37718408

RESUMO

A male infant, aged 1 month and 14 days, was admitted to the hospital due to abdominal distension lasting for 2 weeks and worsening for 3 days. The infant had a history of omphalitis. Physical examination revealed severe abdominal distension, prominent abdominal wall veins, hepatosplenomegaly, and massive ascites. There was a slight elevation in liver transaminase levels. Liver ultrasound and CT scans demonstrated the absence of visualization of the intrahepatic segment of the portal vein and the left, middle, and right veins of the liver, indicating occlusion of these vessels, along with surrounding fibrous hyperplasia. The clinical diagnosis was hepatic sinusoidal obstruction syndrome resulting from omphalitis. A large amount of bloody ascites developed after 12 days of hospitalization, resulting in hypovolemic shock and respiratory failure. The infant passed away following the family's decision to discontinue treatment. This article focuses on the diagnostic approach and multidisciplinary management of neonatal-onset hepatic sinusoidal obstruction syndrome, as well as provides insights into the differential diagnosis of hepatomegaly and ascites.

7.
Front Microbiol ; 14: 1165916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266022

RESUMO

Objectives: Cutaneous tuberculosis with various manifestations can be divided into several clinical types according to the host's immune status and infective route. However, the etiological factors of this disease remain unclear. The objective of this study is to investigate the pathogens associated with the occurrence and different types of cutaneous tuberculosis. Methods: 58 Mycobacterium tuberculosis strains isolated from cutaneous tuberculosis over the last 20 years were sequenced and analyzed for genomic characteristics including lineage distribution, drug-resistance mutations, and mutations potentially associated with different sites of infection. Results: The M. tuberculosis strains from four major types of cutaneous tuberculosis and pulmonary tuberculosis shared similar genotypes and genomic composition. The strains isolated from cutaneous tuberculosis had a lower rate of drug resistance. Phylogenic analysis showed cutaneous tuberculosis and pulmonary tuberculosis isolates scattered on the three. Several SNPs in metabolism related genes exhibited a strong correlation with different infection sites. Conclusions: The different infection sites of TB may barely be affected by large genomic changes in M. tuberculosis isolates, but the significant difference in SNPs of drug resistance gene and metabolism-related genes still deserves more attention.

8.
BMJ ; 381: e071601, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169374
9.
Chemosphere ; 328: 138562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004823

RESUMO

Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Arritmias Cardíacas/induzido quimicamente
10.
Signal Transduct Target Ther ; 8(1): 32, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646695

RESUMO

Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.


Assuntos
Autofagia , Processamento de Proteína Pós-Traducional , Processamento de Proteína Pós-Traducional/genética , Autofagia/genética , Fosforilação , Metilação de DNA , Proteínas/genética , Epigênese Genética/genética
11.
Food Chem Toxicol ; 172: 113589, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584932

RESUMO

Bisphenol A (BPA) is a common environmental chemical with a range of potential adverse health effects. The impact of environmentally-relevant low dose of BPA on the electrical properties of the hearts of large animals (e.g., dog, human) is poorly defined. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of ventricular repolarization and prolongation of the QT interval of the electrocardiogram is a marker for the risk of malignant arrhythmias. We examined the acute effect of 10-9 M BPA on the electrical properties of female canine ventricular myocytes and tissues. BPA rapidly delayed action potential repolarization and prolonged action potential duration (APD). The dose response curve of BPA on APD was nonmonotonic. BPA rapidly inhibited the IKr K+ current and ICaL Ca2+ current. Computational modeling indicated that the effect of BPA on APD can be accounted for by its suppression of IKr. At the tissue level, BPA acutely prolonged the QT interval in 4 left ventricular wedges. ERß signaling contributed to the acute effects of BPA on ventricular repolarization. Our results demonstrate that BPA has QT prolongation liability in female canine hearts. These findings have implication for the potential proarrhythmic cardiac toxicity of BPA in large animals.


Assuntos
Arritmias Cardíacas , Fenóis , Animais , Cães , Feminino , Arritmias Cardíacas/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Miócitos Cardíacos , Fenóis/toxicidade
12.
Front Pharmacol ; 13: 933739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979231

RESUMO

Cyclosporine (CsA) is a component of the first-line treatment for acquired aplastic anemia (acquired AA) in pediatric patients. This study aimed to develop a population pharmacokinetic (PK) model of CsA in Chinese pediatric patients with acquired AA to inform individual dosage regimens. A total of 681 CsA whole blood concentrations and laboratory data of 157 pediatric patients with acquired AA were retrospectively collected from two hospitals in Shanghai. A nonlinear mixed-effect model approach was used to build the population PK model. Potential covariate effects of age, body weight, and biochemical measurements (renal and liver functions) on CsA PK disposition were evaluated. Model fit was assessed using the basic goodness of fit and a visual predictive check. The CsA concentration data were accurately described using a two-compartment disposition model with first-order absorption and elimination. Body weight value was implemented as a fixed allometric function on all clearance and volume of distribution parameters. Total bilirubin level was identified as a significant covariate on apparent clearance (CL/F), with a 1.07% reduction per 1 nmol/L rise in total bilirubin level. The final estimates for CL/F and central volume (Vc/F) were 29.1 L/h and 325 L, respectively, for a typical 28 kg child. Other covariates (e.g., gender, age, albumin, hemoglobin, hematocrit, serum creatinine, and concomitant medication) did not significantly affect the PK properties of CsA. This population PK model, along with a maximum a posteriori Bayesian approach, could estimate individual PK parameters in pediatric patients with acquired AA to conduct individual CsA therapy.

13.
J Physiol ; 600(9): 2089-2103, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35244217

RESUMO

Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3- cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole. Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. KEY POINTS: Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically efficient mechanism of H+ extrusion that would not cause Na+ loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle.


Assuntos
Miócitos Cardíacos , Prótons , Ácidos , Animais , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Cães , Concentração de Íons de Hidrogênio , Miócitos Cardíacos/fisiologia , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
14.
Mol Ther ; 30(1): 54-74, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678511

RESUMO

Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infarto do Miocárdio , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/metabolismo , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo
15.
Acta Derm Venereol ; 102: adv00622, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904688
16.
Emerg Infect Dis ; 27(11): 2944-2947, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670653

RESUMO

We investigated a case of cutaneous infection in an immunocompromised patient in China that was caused by a novel species within the Mycobacterium gordonae complex. Results of whole-genome sequencing indicated that some strains considered to be M. gordonae complex are actually polyphyletic and should be designated as closely related species.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium , China , Humanos , Hospedeiro Imunocomprometido , Mycobacterium/genética , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Micobactérias não Tuberculosas/genética
17.
Chemosphere ; 277: 130355, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381285

RESUMO

Bisphenol A (BPA)-free plastic products are widely available. Transient BPA release has been reported in Tritan drinking bottles. This study assessed the effectiveness of common consumer washing methods in removing BPA contamination in Tritan bottles using both ELISA and HPLC-MS/MS assays. BPA release was detected in 2 out of 10 kinds of Tritan drinking bottles tested. Average BPA level was 0.493 µg/L in water samples from a type of Tritan kid drinking bottle following 24-hour incubation at room temperature, corresponding to a release rate of 0.015 ng/cm2/h. Of the common consumer cleaning methods identified in an informal survey, dishwashing was the most effective method that significantly reduced, even eliminated BPA release from the tested BPA-positive Tritan bottles, while rinsing with water and handwashing with soap and water were ineffective. The bioactivity of the leached BPA was confirmed using a rodent cardiac myocyte acute exposure model and an invertebrate 7-day exposure model. The BPA release is possibly the result of surface contamination in the manufacturing process. As a case study, our result may be informative for general consumer practice and for better quality control by the manufactures.


Assuntos
Compostos Benzidrílicos , Espectrometria de Massas em Tandem , Fenóis , Plásticos
18.
J Pers Med ; 11(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204946

RESUMO

The inherited mutation (R14del) in the calcium regulatory protein phospholamban (PLN) is linked to malignant ventricular arrhythmia with poor prognosis starting at adolescence. However, the underlying early mechanisms that may serve as prognostic factors remain elusive. This study generated humanized mice in which the endogenous gene was replaced with either human wild type or R14del-PLN and addressed the early molecular and cellular pathogenic mechanisms. R14del-PLN mice exhibited stress-induced impairment of atrioventricular conduction, and prolongation of both ventricular activation and repolarization times in association with ventricular tachyarrhythmia, originating from the right ventricle (RV). Most of these distinct electrocardiographic features were remarkably similar to those in R14del-PLN patients. Studies in isolated cardiomyocytes revealed RV-specific calcium defects, including prolonged action potential duration, depressed calcium kinetics and contractile parameters, and elevated diastolic Ca-levels. Ca-sparks were also higher although SR Ca-load was reduced. Accordingly, stress conditions induced after contractions, and inclusion of the CaMKII inhibitor KN93 reversed this proarrhythmic parameter. Compensatory responses included altered expression of key genes associated with Ca-cycling. These data suggest that R14del-PLN cardiomyopathy originates with RV-specific impairment of Ca-cycling and point to the urgent need to improve risk stratification in asymptomatic carriers to prevent fatal arrhythmias and delay cardiomyopathy onset.

19.
Pharmgenomics Pers Med ; 14: 813-821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285550

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have identified some immune-related single-nucleotide polymorphisms (SNPs) to be associated with leprosy. METHODS: This study investigated the association of 17 SNPs based on previously published GWAS studies with susceptibility to leprosy, different polar forms and immune states of leprosy in a case-control study from southwestern China, including 1344 leprosy patients and 2732 household contacts (HHCs) (1908 relatives and 824 genetically unrelated contact individuals). The differences of allele distributions were analyzed using chi-squared analysis and logistic regression. RESULTS: After adjusting covariate factors, rs780668 and rs3764147 polymorphisms influenced susceptibilities to genetically related or unrelated leprosy contact individuals. rs142179458 was associated with onset early cases, rs73058713 A allele and rs3764147 A allele increased the risk of reversal reaction, while rs3764147 G allele had higher risk to present lepromatous leprosy and erythema nodosum leprosum. CONCLUSION: Our results demonstrated that genetic variants in the LACC1, HIF1A, SLC29A3 and CDH18 genes were positively correlated with the occurrence of leprosy and leprosy clinical phenotypes, providing new insights into the immunogenetics of the disease.

20.
Front Pharmacol ; 12: 701452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326772

RESUMO

High-dose methotrexate (HD-MTX) is widely used in pediatric acute lymphoblastic leukemia (ALL) treatment regimens. In this study, we aimed to develop a population pharmacokinetic (PK) model of HD-MTX in Chinese pediatric patients with ALL for designing personalized dosage regimens. In total, 4,517 MTX serum concentration data for 311 pediatric patients with ALL, aged 0.75-15.2 years and under HD-MTX treatment, were retrospectively collected at a tertiary Children's Hospital in China. The non-linear mixed-effect model was used to establish the population PK model, using NONMEM software. The potential covariate effects of age, body weight, and biochemical measurements (renal and liver function) on MTX PK disposition were investigated. The model was then evaluated using goodness-of-fit, visual predictive check. MTX PK disposition was described using a three-compartment model reasonable well. Body weight, implemented as a fixed allometric function on all clearance and volume of distribution parameters, showed a substantial improvement in model fit. The final population model demonstrated that the MTX clearance estimate in a typical child with body weight of 19 kg was 6.9 L/h and the central distribution of volume estimate was 20.7 L. The serum creatinine significantly affected the MTX clearance, with a 0.97% decrease in clearance per 1 µmol/L of serum creatinine. Other covariates (e.g., age, sex, bilirubin, albumin, aspartate transaminase, concomitant medication) did not significantly affect PK properties of MTX. The proposed population PK model could describe the MTX concentration data in Chinese pediatric patients with ALL. This population PK model combined with a maximum a posteriori Bayesian approach could be used to estimate individual PK parameters, and optimize personalized MTX therapy in target patients, thus aiming to reduce toxicity and improve treatment outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA